
N

AD AOS6 886 ILLINOIS UNIV AT URBANA CHAIWAIGN COORDINATED SCIENCE LAB F/6 9/2
NEW PARALLEL SORTING SCHEMES. (U)
JUL 17 F P PREPARATA DAABO7 72 C—0259

i,wrL Acc t rT rn P—fl? NL

END
I ______________________________ ______________________________

9 - 79

—I — —~ ~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

,

LEVELII JULY 1977

i ~~~~ COORDiNATED SCIENCE LABORA TORY

I APPUED COMPUTATION THEORY GROUP

I I
~~

NEW PARALLEL
SORT NO_SCHEMES

t
-
I

___________ _ _ *

_ ___ •I __ D O C

STATEXENT A UI LU- ENS 7? -tEtS
fat public i.Isaai

L Dialdbuffcn thilimit.d

J L~. LZ~

_. c~~~’ ~~~ ~~~~~~~~ _ .~~.,

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
— . 

~
-..---.

UNCLASSIFIED
-SECURITY CLASSIFICATION OF THIS PAGE (W~i.n Oat. EnI•tsd) 

__________________________________

D~~ DADT IIIA mklTA1~IflU DA ~~ C READ INSTRUCTIONS
i~~~i ins. ~~~~~~~~~~~~~ u i  I l’.Pi~ r ~~ J~- BEFORE COMPLETIN G FORM

I. REPORT NuMBER 2. GOVT ACCESSION NO. 3. RECIPIENT S CATALOG NUMBER

TITLE (and Subtit?.) TYPE OF REPORT S PERIOD COVERE0

( ~~j i
EW ~ ARALLEL .$~RTING SCHEMES ~~~~~~ hnica1 ~~~~~~ .~~ 1

1. •CRFORM~NG ORG. REPORT NUMIERJ

______________________________________________ R—7 82~_ UILU—ENG 77—2229’
1 THOR(s) S. CONTRACT OR GRANT NUMBER(b)

— 
F. P. Preparata 

DAAB—07—72—C — 0259 /

9. PERFORMING ORGANIZATION NAM E AND ADDRESS tO. PROGRAM ELEMENT, PROJECT . T A SK

Coordinated Science Laboratory l AREA I WO RK UNIT NUMBERS

University of Illinois at Urbana—Ch ampaign
Urbana , Illinois 61801

I I . CONTROLL INGOFFIC ENAME AND ADDRESS ~~
Joint Services Electronics Program ( I A ~~~_ffi1h 77

% .. iL NUMW!WOF PAGES

i t  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
15

IS. MONITORING AGENCY NAME S AOORESS(I1 dI f I.tont Item Cant rolling OHic.) IS SECURITY CLASS. (of 11,1. r.port)

IS. D~~CLAS5 IFICA 1iON/DOWNGRAD ING

15. DISTRIBUTION STATEMENT (of this R.por()

Approved for public release ; distribution unlimited

DISTRIBUTION STATEMENT (of ffi. abstract .nt. ,.d in BJoc* 2O~ ii dIff.rant from Røport)

@~~~BB~ 7ir Ci~~
1) 

~iY~ :M C ~~4~t1~ ~t1
IS. SUPPL EMENTA 

~? j
IS. KEY WORDS (Confinu. on v.v.ra. .id. if n.c.saary and td.ntlfy by block numb.,)

Parallel Computation
Computational. Complexity
Design of Algorithm

~~~~~~~~~~~ Sorting
Enumeration Sorting

2O.”~~~ STRACT (Continua on r•v~ra• aid• ii n.c.a.ary and fd.nui fy by block numb.r)

In this paper ~~~describe~,(a f a m i l y of parallel sorting algorithms for a mult i—
pro~easor system. These algorithms are enumeration sorts and comprise the
following phases : (±1~~ ount acquisition: the keys are subdivided Into subsets
and f o r each key ve~4.t~ 4.m.~ the number of smaller keys (count) in every
subse~ ; c4±t ’ rank determination : the rank of a key is the sum of the previously
obtained counts; (44i~~data rearrangement : each key is placed in the position
specified by its rank. The basic novelty of the algorithms is the use of
parallel merging to implement count acquisitio . using Valiant ’s merging

DD
~~~~~ 

LOITO 7N0
V .~~~~~ff LETE 1 5~ ~ ~ T 1E1~O~~ ‘1 1O~ ~~~ L

SEC u~~~TY  CL A I C A f l O N  O~ THIS ~‘AGE (Wt ~,n Oaf Ent.rØd)

—. ~~~~~~~~~~~~~ — — . - . .~ .-~~~ I



_______ 

~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~ 
.
~
, .

UNCLASSIFIED
ISCURstY CL.AUIPICATION OP ThIS PASS(IIu., Data LWsta ~~

20. ABSTRACT (continued)

scheme, we show tha t n keys can be sor ted in parallel with nlog
2nprocsssors in t ime Clogn n + o(log

2n); in addition, if memory fe tch
conflicts are not allowJ , using a modified version of Ba tcher ’s
merging algorithm to implement phase (i) we show that n keys can be
•o~ted with processors in time (C ’/~)log2n + o(log

2n) thereby
matching the performacne of Hirschberg ’s algorithm, which , however,is not free of fetch conflicts.

p

UNCLASSIFIED
SECURITY CI.ASSIPICATION OF tHIS PAD W (W7 .. Oat . S fa d)

—
-~~~ — - . -~~~~~~~~~~~~~~

,-

-om’~~- —~v-~ ~~-‘-~

_ _

LEVEV
JMUHUtIIS....._....._....

A .

I “ ——..~~
SI$T1ISflhSS/aflIUJIU1~ SISU

-

~~~~~~~~~~~~~~

~~~i FI I J I LU — EN C 77 — 2 2 29

I
I

NEW I’AI~~LLEL. SORTING SCHEMES

by

F. ~ Preparata

t i
I This work was supported in part by the National Science

Foundation under Grant NSF MCS—76—1 7321 and in pa r t by the Joint

I Services Electronics Program (U.S. Army , U.S. Navy and U.S. Air

Force) under Contract DAAB—07—72—C—0259.

I Reproduction in whole or in part is permitted for any purpose

of the United States Government.

‘ ‘ I
i
i Approved for public release. Distribution unlimited.

.1

.~~~~~~~~~ .

— . ~~~~~~~~~~~~~~~~~~~

~1
I
I NEW PARA LLE L SORT IN G SCHEME S

F. P . Prepa rata*, Senior Member IEEE

J Universi ty of I l l inois at Urbana-Champaign

I Abstract

In this paper we describe a family of paralle l sorting algorithms

J for a mul t iprocessor system. These algorithm s are enumeration sort ings and

.~ comprise the fol lowing phases: (i) count acquisition : the keys are sub-

divided into subsets and for each key we determine the n umber of smaller

keys (count) in every subset; (ii) ran k determination : the rank of a key

is the sum of the previousl y obtained counts; (iii) data rea rr angement :

each key is p laced in the position specified by its rank. The basic

r novelty of the al gorithms is the use of pa r al le l merging to imp lement count

a- acquisition. By using Valiant ’ s merging scheme , we show that n keys can

be sorted in paral le l with n log2 n proc esso r s in time C log2 n + o(log2n) ; in
a

addition , if memory fetch conf l ic t s are not allowed , using a modified version of

Batc her ’s merging al gorithm to imp lemen t ph ase (i) ,we show that n keys can

be sorted with n H
~ processors in t ime (C ’/ ~~) log2 n + o(log 2n) , thereby match-

ing the performance of Hirschberg ’s algorithm, which, however , is not free

of fetch conflicts . 9

I
* $
Coordinated Sc ience Laboratory, Department of Electrical Engineering , and

J Department of Computer Science , University of Illinois , Urbana , IL. 61801

This work was supported in part by the National Science Foundation under
Grant MCS76- 1732 1 and in part by the Joint Services Electronics Program
under Contract DA.AB-07-72-C-0259 .

L

a

NEW PARALLEL SORTING SCHEMES

F. P. Preparata

_ _ _ _ _
1. Introduction

The efficient implementation of comparison problems , such as merging,

sorting, and selection , by means of multiprocessor computing systems has

attracted considerable at tention in recent years . One of the earliest funda-

mental results is due to K. E. Batche r [1], who proposed a sorting ne twork

consisting of comparators and based on the principle of iterated merging ; as

is well-known , such scheme sorts n keys with 0(n(logn) 2) comparators in time

• O((Iogn)
2
). Batcher ’s network is readily interpreted , in a more general

framework , as a sys tem of n/2 processors with access to a common data memory

of n cells: obviously , the network structure induces a nonadaptive schedule
-

of memory accesses. Af ter the appearance of Batcher ’s pape r , substantial work

was aimed at f i l l ing the gap between the upper-bound O((logn)2) on the number

of steps which is achievab le by a network of comparators and the lower-bound

0(logn) ; the lack of success , however , convinced several workers to look for

more flexible forms of parallelism.

The f i r s t scheme shown to sort n keys in time 0(logn) is due to

D. E. Muller and F. P. Preparata [2], but it requires a discouraging number of

0(n 2) processors . Subsequently, new results were obtained on parallel

merging by F. Gavril [3]. L. G. Valiant [4] must be credited with

addressing the fundamental question of the intrinsic parallelism of some

- This work was supported in part by the National Science Foundation under
p Jrant HCS76-1732 1 and in part by the Joint Services Electronics Program

~. under Contract DAAB-07-72-C-0259.

I.I

r -

~~~~ ~~~~~~~~ 
- —

I
1
L p rocesso rs , each capable of random-accessing a common memory with no alignment

penalty . Store , fetch , and a r i thmet ic  ope rations have un i t  costs , and f e t ch

con f l i c t s  are disallowed when appropriate.

A ll of the algori thms described in this pape r - as well as

I Hirschber~~’s [5] - are instances of enumeration sor t ing ,  in Knuth ’s te rmi -.

E no logy ( [6 ] ,  p. 73) .  In these methods each key is compa red wi th a l l  t he

o thers and the number of smaller keys determines the given key ’s fina l

[ position. Specifically, th ree d is t inc t tasks are clearl y ident i f iable  in

enumeration sort ing al gorithms :[ (L)  coun t acquisition. The set of keys is partitioned into subsets

E and for each key we determine the number of smaller keys in each

subset (this informal description momentarily assumes that all

[ keys are distinct);

(ii) rank computation. For each key the sum of the counts obtained

[ in (i) gives the final position (rank) of that key in the

[ sor ted sequence;

(i i i)  data rearrangement. Each key is p laced in i ts  fina l posit ion

according to its rank .

Less informally, an enumeration sorting scheme has the following forma t ,

[ where we assume for s implici ty that , for some given integer r , n = kr .

Data struc tures to be used are arrays of keys . By A {i : j]  we denote a

I. sequence A[i]A[i+l]. . .A[J].

I 
_ _ _
Input: A [0:n- l ],  the array of the keys to be sorted , integer r

I Outpu t: A [0 :n-l],  the array of the sorted keys .

I
I

- _____



- 
- 

- - . — .- - -

1
1. begi n Define A~ [O:r- l]  — A[ir :( i+ l ) r-l ]  , for i=O ,. .., k- 1.

I I [A~Oi) IA
J
EhJ � A~[L ] J I  fo r j  <

2 ( ij ) _
. CL

I I(A~ (h) IA~ [h] <A i [ L ] ) I  for j > i

c~~~- ~[A~
[h]lA~[hJ � A~[L],h < L)  U [A~[h] k~[h] < A4 [L] ,h > z)

3. r . i n k ( A. [ 2 ] ) 4- E
j=O

4. A[ rank(A~ [ L ] ) ]  ~ A~[L]

-
I

Note that count acquisition , rank computation , and data rearrangement are

per formed , respectively,  in steps 2 , 3 , and 4. Also , the algorithm must

- insur e that a l l ranks be distinct , which is a crucial condition for the data

- rearrangement task (otherwise memory store conflicts would occur) . This

clearly poses no problem when the keys are all dis t inct .  In the opposite

case , some convention mus t be adopted for the ordering of sets of identical

keys . One such convention is that sorting be s table (see [6], p. 4) ,  that is ,

the initial order of identical keys is preserved in the sorted array . Thus ,

all of our sorting schemes will be stable. This is reflected in the rules

for the computation of the parameters ~~~~~ in Step 2 of the above al gorithm.

The simp le al gori thm proposed by Muller and Preparata in [2]

is a crude example of enumeration sorting, in which the sets Ai are chosen

to be singletons . Wi th this choice , each key is compared with every other

L key, thereby using 0(n 2
) processors; simi lar ly, rank computation uses 0(n 2 )

processor s, since 0(n) processors are assigned to each key. The time bound

0(logn) is due to Step 3 (counting in parallel the number of l ’ s in a set

of n binary digits), whereas Steps 2 and 4 run in constant time in our present
P 

model.

EL



In the more comp lex procedures to be later described , the ope ra t io ns

of rank computation and data rearrangement are essent ia l ly  carried out as

in the basic scheme described above . The main difference occurs with regard

to count acquisition. In the Muller-Preparata method the counts are acquired

by comparing each key with every other. The comparison of two keys A [i] and

A [j] could be viewed as merging A [i] and AU ]. If rather than dealing with

single keys we now deal with sorted sequences of keys A~ [0:r-l1 and A~ [O:r-l]~

where r > 1 and , say , j < i, then the number of keys in A~[O:r-l] which are

no greater than A~Et] (L’ O ,.. .,r-l) as well as the number of keys ir9 A . [0: r-1l

which are less than A~[h] (h=O,. ..,r-l), can be obtained by merging the two

sequences A~[O:r-1l and A~[O:r-l]. In fact, let B[O:2r-l] be the array obtained

by merging the two sorted arrays A
3
[O:r-l] and A~[O:r-lJ with the ordering

convention &~[s] 
< Ak[s+1] (k=i ,j) and B[s] S B[s+l]. Suppose also that the

merging be stable, that is, the order of identical keys in the concatenated

array A~[0:r-1]A ~[0:r-l] is preserved in B[O:2r-l]. If B[q] A1 [L], then

there are (q-L) entries of A~[0:r-l] in B[0:q-l] which are no greater than

A~[L); similarly if B[q] = A~[h]~ then there are (q-h) entries of Ai[O:
r_l]

• in B[0:q-l] which are strictly less than A~[h]. This is the central idea

of the algorithms to be described .

2. A fast parallel sorting algori thm

In this section we assume that in our computationa l model memory

fetch conflicts are permitted . To provide the feature required by Valiant ’s

merging algorithm, that a key be simultaneously compared with several other

keys, we may assume that the processors have broadcast capabilities. The

only overhead we shall neglect is the reassignment of processors to the

a operation of merging pairs of subsequences , as occurs in Valiant ’s method [4).

L 
~~~~~~~~~-~~~~~~~~~~~- 

~~. - - - —- _

—if - : - - ~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~
-— -

I-.

1
6

Notice that this model of parallel computation coincides with that

j required by Valiant ’s merging algorithm .

We assume inductively that the following algorithm, SORT1, for p <- n

uses at most [plogpJ processors to sort p keys. Since SORTI is

recursive , the following presentation constitutes a cons tructive extension

of the inductive step to the integer n. The induction can be started with

[
Algorithm SORT1

L begin

1. k — riogni , r .- ~/riogn1j

L 2. Define arrays S{0:k;0:k;O:2r-l] and R [0:k;O:k;0:r-l]

1 (three-dimensiona l arrays) and A~[0:r~ lJ A [ir:(i+l)r-1](i=0,...,k- l\ ,

A.K
[] — A[kr:n-l](for n > kr).

Comment: When nRkr, array A
k

is obviously vacuous. Array S is

defined for simplicity as having (k+l)22r cells , although the

algorithm will only make use of the cells s[i;j:qJ for which i j.

3. A~[0:r-l] ‘- SORT l(Ai[0:r~
l]) (i—0,.. .,k-l)

I Ak [0: n~
kr

~
l] ~

- SORTl (A,K[O:n~
kr
~
l]).

I Comment: This step is a paral lel recursive call of SORT 1 and it

involves sorting in parallel k sets of r keys each and , possibl y .
p

-

I one set of (n-kr) keys. By the inductive hypothesis , it uses at

- most k lrlogrj + L(n-kr)log(n-kr)J N processors. Since

- n-kr < rlognl , the number of processors used is less than

I. riogni .[~~,r1ogn1J.log(~,r1ogn1Jj + Lrlognl Iog Flo gnlj

~ nlog(n/ Ilognl) + rlognllog rlognl

I — nlogn_log rlognl(n-Ilognl) ~ nlogn-i

~ L~ lognJ , for n � 3. For the sake of uni form i ty , array A.K is

now extended to size r , where each cell of A.K [n
~

k r :r
~

l] is f i l l e d

[with a duusny sentine l larger than any key .

~~~~~~~~~~~~~~~~~~~



- - — - -— . . a~~J.~ < .. { W W _  ~~~~~~~~~~~~~~~~~~~~~~~~ .. -,— . _______________________________________________

7

4. S[i;j;0:r-l] — A
~
[O:r

~
1](i=O ,...,k

~
l; jai+l ,...,k)

SLL;j;r:2r-i] — A~[O:r-1](i=0~ ...~ J- 1; j=l ,...,k)

Comment: This is a copying operation whose objective is to obtain

- 

S [i;j;o:2r-l] = A
1[0:r-l]A ~[O:r—1] for all pairs (i,j) with i 

< 3.

In our model , this operation could be done with maximal parallelism.

However, using only (‘~~~)r processors , the 
(k+l )2r elementary

copying operations are completed in two ti me units. For later

convenience we assume tha t the reLord associated wi th  key A~ [L] -

contains a LABEL consisting of the pair of integers (i,L ) .

5. s[i;j;0:2r—l] MERGE (S[i;j;0:r—1], s[i;j;r:2r—1])

(i=O ,...,k-1; j=i+l,...,k)

Comment: This step uses Valiant ’s merging algorithm and runs in time

C1loglogr + 0(1), for some constant c1, using (k+l)r processors . The

original version of Valiant ’s merging algorithm can be readily

modified , so that, whenever two keys are identical the indices of

their respective subarrays are compared .

6. Let (x ,L) LABEL s[i;j;q]

If  x=i then R [ i ; j ; f]  — q-L else R[j;i;L] — q- -~

(i= 0 ,. .. , k — l ;  3—i-f l ,. . . , k;  q=O , . . . , 2 r — l )

7. R [ i ; i ;d  — I ( i— O , . .  ., k;  .t=O,...,r—1)

Comment: Steps 6 and 7 complete the count acquisi t ion task . In ;
fact a f t e r  Step 7 the content of R [i ; j ; L]  is ~~~~~ in the 9

terminology of Section 1. Step 6 can be executed in two time

units using (~~~)r processors, whereas Step 7 uses (k+l)r

processors and runs in one time unit.

4



- ——-—-—~— --—— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I
8

k

-
8. rank(Ai

EI])
~
— ~ R[i;j;2] (iaO ,...,k; L=0,...,r-1)
3=0

Comment: This step implements the rank computation. For any

pair (i,L) the sum can be computed with L(k+l)/2J processors

in time I log(k+l)1 loglogn. The total number of processors

used is therefore n L(k+l)/2J .

9. A[rank(A~LL])J
— A~LL] (i=O , . . . , k ; L=O , . . . ,r - l)

To complete the analysis of the algorithm , we observe that none

of Steps 4-7 uses more than (~ 2)r
processor•. But

r k(k+l) = ~~/ I1ogn1Jfiogn1~ 2)� n Ilognl+l
where the last inequality is due to the removal of the “floor” sign.

9• _

Also , Step 8 uses n L(k+l)/2J < n(Ilognl+l)/2. Since, for all

r~
� 4,n(1lognl+l)/2 < LplognJ , the inductive hypothesis on the number of

processors is extended.

Finally, let T(n) denote the running time of the algorithm for

n keys . Since r ~~
- n/logn we obtain

T(n) = T(-_~-A .~. c2 loglogn + c31 gnI

for some constants C2 and C3. It is easily verified that a function of the

-

form C2(logn) + o(logn) is a solution of the above recurrence. It is worth

noting that for the same number of process~ rs, Valiant proposes a sorting

scheme of the merge-sort type ([4], Corollary 8) which runs in time

2logn’loglogn - o(logn’log logn) .

3. Parallel sorting algorithms with no memory fetch conflicts

We shall now consider a family of algorithms for sorting n numbers

l+~in parallel wi th n processors (0 < o~~~ 1) in time (C’/or)logn + o(logn),

—~~~
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .------~~--- ---- --- ---— ~~~~~ -

r -

~~~~~~~~~

9

for some cons tant C’ . Each of these algorithms has the same perfo rmance

as the corresponding al gorithm by Hirschberg [5], although no memory

fetch conf l i c t occurs in this case. Again , we make the inductive hypothesis

- that for p < n , Algorithm SORT 2 uses ~~~~ processors to sort p keys . The

forma t of SORT 2 closely parallels that of SORT1, with a few crucial differences

to be noted .

Algorithm SORT2

- begin

1. k - ‘n I , r ‘— t.n/’n 1 .j

2. Define arrays s[0:k;O:k;O:2r-l], R[0:k;O:k;0:r-1]

I and A~[0:r-1]
— A [ir:(i+l)r-1] (i=0,...,k_l),A.k

[O:n_kr
~
li -. A [kr:n-l] for n>kr.

3. A~[O:r_1J — SORT2(A~[O:r-l]) (i+O,...,k-l) ,Ak[O:
fl_kr_l] ‘- SORT2

I Comment: This parallel recursive call of SORT2 sorts k sets of

I r keys each and , possibly, one set of n-kr < k keys. By the 9

inductive hypothesis, at most kr~~~ + (n-kr)~~~ ~ N processors are

used . Since n-kr <k , then N < kr~~~ + (n-kr) ~~ = kr(r~ -.k~) + ~~~~

Also kr = .
~p/ r~ i j ~ n, whence N < n(r~~k~+k

a) ~~~~~~~~(= fl
l+~~O~ < ~~~~~ where we have used the approximation r

—
~ n

ba
.

Steps 1-3 are analogous to the corresponding ones in SORTI; however,

I the copying operation implemented by Step 4 of SORT1 must be

I considerably modified, as shown by the following Steps 4-6, to

avoid fetch conflicts. Here again, A
~K

is extended to size r

I as in SORT1.

4. S[i;k;O:r-li ‘—A ~[O:r-l] (i—O ,...,k.-l)I s[o;j;r:2r-1] A
3
[0:r—l] (j-l ,...,k)

I
I ... - .

.

—-- ~~~- ~~~ — -“t~~~~~~ ~~

- -

10

S. for m - 0 I until Ilog(k+l)1 - 2
•~~~~~

sLi;j~ 2
m ;0:r~ 1j S[i;j;O :r-1j

(j=k_2 m+l ,...,k; ~_Q ,•~~ ,J_ 2m..1)
P

s[i+2m ;j;r:2r_lJ S[i;j;r~2r-ij

(i=0 ,. . ~ , 2
m~~1; 3~~~2

m~1 ..,k)

b. Let Ilog(k+i)l - 1 = v.

SLi;j-2”;O:r-l] S [i;j;o:r-lj

(3 2 ”+l , . . . ,k ; j Ø ~~~~~~~j _ 2 V _ 1)

s[i+2 ” ;j ; r :2 r - l] S [i ;j ; r :2 r - l]

(i~.O , . . . ,k _ 2 V
~ l ; J .~~÷2

v
÷l k)

Comment: Steps 4-6 jointly replicate each A~[O:-r-1] the required number

k of times. Step 4 is an initial copy ; Step S consists of (loglk+fl -l)

stages , each of which doubles the ranges of the indices ; Step t~ ac counts

tot the fac t that k may not be a power of 2 and completes filling the

array S. Clearly this copying operation is implemented in

log rk+l1 + 1 ~logn + 1 time units . A straightforward analysis shows

that the largest number of processors used in any of these stages is at

most 5/16 of the total number (~~1)2r of cells of S to be filled . It is

also easily shown that (S/l6)(
k+l \

2r (5/l6)(n~+l)n~.n
1
~~ < n’~~ for any

n � l a n d~~~>O.

7. S[i;j;O:2r—1] — ME RG E (SLi;J;0:r-l],SI.i;j;r :2r-lJ)

(i= 0 , . . . , k — 1 ; j=i+1,...,k).

Comment: This step uses a stable version of Batcher ’s merging algorithm [i),

which is easily obtained by requiring that whenever two identical keys are

encountered their array indices be compared (see Appendix). The

following facts about Batcher ’s merging algorithm are well-known:

——9_
~~ •~~~~~~

•
~

•
~~~~_________________________________________________________

r ~~~
. 

— --

~~~~~~~~~~~~

- - - -
-

-- -- --- .-

~~

——- - - - -

- HE ii

(i) no fetch conflict occurs because at any stage (or , time unit)

each key is compared with exactly one key ; (i i) (~~‘1r L (n ~+1)n~ / 2].

~ ~l+o processors are used ; (iii) merging is completed in

logr (l-o’)logn time units.

8. Steps 8, 9 , 10, and 11 of this al gorithm are respectively

identical to Steps 6, 7, 8, and 9 of SORTI and are therefore

omitted . The latter are clearly free of memory fetch conflicts . The

-

-
• analysis of SORT1 showed that at most max ((’~~’)r~nL (k+l)/2J)

processors were used in any of those steps. In the present case,

(k+1’\we have already shown that
~ 2) t <- Ii ; similarly we conc lude

nL (k+ l) /2J ~ n(n~+ l)/2 < n~~~.

From the performance viewpoint, all steps of the algorithm require

at most ~~~~ processors , as postulated . This extends the inductive hypothesis

or. the nusber of processors used by the algorithm. As to the running time T(n) ,

we note the following: Steps 4-6 jointly require ~1ogn + 1 time units ;

St ep 7 requires (l-~)logn time units ; Step 10 requires ~ Logn t ime units ;

Steps 8, 9 , and 11 run in cons tant time. Since Step 3 is a recursive call

of SORT2 on sets of r ~~~~ elements , we obtain for T(n) the recurrence

equation

T(n) = T(n~~~) + (Cj ~ fCp 1ogn +

for some constants C~ , C~ , and C~ . It is easily verified that a tunction of
p

the form LC~~~-C~)/n .hogn + o(logn) is a solution of this equation , whence

T(n) ~ (C’/c~)logn + o(logn).

- ~~~~~~~~~-_

- -

References

1. K. E. Batcher, “Sorting networks and their applications,” Proc. AFIPS
Spring Joint Computer Conference, Vol. 32, pp. 307-314, April 1968. -

-
2. D. E. Muller and F. P. Preparata, “Bounds to Complexities ot Networks

tor Sorting and for Switching,” Journal of the ACM, Vol. 22, No. 2,
pp. 195-201, Apr il 1975.

- . 3 F. Ga-,ril , “Merging with parallel processors,” Comm . ACN, Vol. 18,
10 , pp. 588-59 1, October 1975.

•~ j 4. L. C. Valiant, “Parallelism in Comparison Problems ,” SIAM Journal of
Computing, Vol. 4, 3, pp. 34~ -33 S , September 1975.

r~- 5. D. S. Hir schberg, “Fast Parallel Sorcing Algorithms , ” Tech. Rep.,
Department of Electr. Eng., Rice University , Houston , Texas ,
January 1977.

6. D. ~~. Knuth, The Art of Computer Programming. Vol. III: Sorting and
Searching, Addison-Wesley, Reac~.ing, Mass., 1972.

I,
I -~

I

~

-

13

Appendix

A stable version of Batcher ’s merging algori thm.

The original version of Batcher ’s odd-even merging algorithm runs

as follows (here, for simplicity, we assume that the common length of the

sequences to be merged is a power of 2) :

MERGE (A[O: 2k-l _ 13, A [2 k _ l
: 2

k_ l])

1. A’[j] A[2j], A,[2k4 + j] — A [2j+ 1] (j=O , 1, . ~~~~~~~~~

2. B[0: 2k~ l 1] MERGE (A ’[O : 2
k_ 2

1], A [2 k 2 : 2
k_ 1 1])

BL 2 k 1 : 2k 1] — MERGE (A’[2~~
1: 3.2~~

2
~ 1], A ’[3.2~~

2: 2k~1])

3. A[2j-l] — inin(B[j], B[2k 1 + j—1]), A[2j] — max(B[j], 8[2k~~ + i— i]

(J= 1,•~~ ,2
k~l_1)

This algorithm is not stable (see [6], p. 135, exercise 13), because in

compliance with the rules of the comparator module , whenever B [j] =

+ j - ij in Step 3, the algorithm assigns A[2j-l] —

A [2j] ~- B[2~~
1

+ j - l J . Fortunately , however , with a simple modification ,

s tabi l i ty can be attained . Specifically, we associate with each key o the

in i t i a l array A [0: 2k_1~ a label , and set LABEL(A[j])’- j (notice that all

labels are d is t inc t) . We then rep lace St ep 3 above with the following step:

• 3’. U B[J] = B[2k 1
+ j - l] then A [2 j - l] ‘- key with smaller label

A [2j] ‘- key wi th larger label

U else A [2j-l] min (B[j], B[2
k l

+ j-l]), A [2j] ‘- max(B[j], B[2~~~ + j-lj~

(J...11~~•~~~2k~ l~~1)
1~L We now prove that the new version of the algorithm is stable .

Assume that in the original array A[0: 2
1c_ 1 _ 1] the subarray s A F O: t 1-l] ,

A [t 1: s
~~

_ l J , and A[s 1: 2
k_ l _ 1) contain keys which are respective ly less ,

equa l , and larger than some fixed value a; s imilarly for A [2~~~ : 2k . 1+t 1]

I
-- ~~~~~~~~~~~~-—--~~~ - - - - - _ _- -S- - -

—- —
-~~~~~

-
~
__•_•4__ —

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

t .

A [2k
~~+t 2 : 2~~

l+ s2~
1], and A[2~~ ’+ 82 : 2k 1~~ Assume inductively that

14

the merged sequences obtained in Step 2 are stably sorted and consider a -

key ALp] for pE [t 1, s1-I] . Assume at f i rs t p = 2 j ; then , by Step 1,

A’ [j] A[2j]. Moreover, there are 1t2
/2l keys in A ’[2~~

2 : 2t 14] s t r i c t ly

smaller than A [2j]; whence AL2J] = B[j + 1t 2 / 2 1] . According to Step 3’

B[j+ 1t
2
/21] is compared wi th B [2k 1 + j_i + Ft 2/21]. Suppose t

2
is even:

then if (2j - l) E [t 1,s1-l], B[2
k 1

+ j~i + 1t 2 /2 1] = A[2j -1] and we compare

(the labels of) A[2j] and A [2j-l]; otherwise, i.e., when 2j-1 = t1-l or ,

equivalently , A [2j] = ALt
1
], the latter is compared with a key less than a.

Suppose now that t2 is odd: then if (2j+1) E [t1,s1-l], we have

8[2 k 1
+ J~1 + 1t 2 /21] = A [2j÷l] and we compa re (the labels of) A [2j] and

A[2j+l]; otherwise A [2j] = A[s
1-l] and A[s1-1]

is compared with a key which

is either larger or has a larger label. Clearly, in the given case, stability

is ensured , and by analogous arguments we can treat all other cases.

- L
‘p

~~

